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Bekenstein-Hawking entropy and beyond

Based on

A.D. João Gomes, Sameer Murthy, “Quantum Black Holes,
Localization, and the Topological String,” arXiv:1012.nnnn

A.D. João Gomes, Sameer Murthy, “Localization and Exact Quantum
Entorpy of Small Black Holes,” arXiv:1101.nnnn
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Bekenstein-Hawking entropy and beyond

Black Hole Entropy Bekenstein [72]; Hawking[75]

Entropy of black holes remains one of the most important and precise
clues about the microstructure of quantum gravity.

By now, there is a very good statistical understanding of the entropy
of a large class of supersymmetric charged black holes in several
compactifications of string theory, in the thermodynamic limit of large
horizon area or large charges. Strominger & Vafa [96]

For a BPS black hole with charge vector Q, the leading Bekenestein-
Hawking entropy precisely matches the logarithm of the degeneracy of
the corresponding quantum microstates.

A(Q)

4
= log(d(Q)) + O(1/Q)
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Bekenstein-Hawking entropy and beyond

This beautiful approximate agreement raises two important questions:

What exact formula is this an approximation to?

Can we systematically compute corrections to both sides of this
formula, perturbatively and nonperturbatively in 1/Q and may be
even exactly for arbitrary finite values of the charges?

We would thus be interested in computing finite size corrections to the
Bekenstein-Hawking entropy.
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Finite size effects

Finite size effects

We do not know at present which of the phases of string theory might
correspond to the real world. For a theory under construction such as
string theory, a useful strategy in such a situation is to focus on
universal properties that must hold in all phases of the theory.

One universal requirement for a quantum theory of gravity is that in
any phase of the theory that admits a black hole, it must be possible
to interpret the thermodynamic entropy of the black hole as the
statistical entropy of an ensemble of quantum states in the Hilbert
space of the theory.

This is an extremely stringent constraint on the consistency of the theory
since it must hold in all phases of the theory.
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Finite size effects

The leading Bekenstein-Hawking entropy from this point of view is in
a sense a bit too universal since it follows from the Einstein-Hilbert
action which is the leading low energy effective action in all phases.

Finite size effects, by contrast, depend on the “phase” or
compactification under consideration and the higher derivative terms
in the effective action. They thus provide a sensitive probe of short
distance degrees of freedom and hence are physicsally very interesting.

One can hope to learn more about the microscopic degrees of freedom
of quantum gravity, effective actions in string theory, nonperturbative
functional integral of quantum gravity, exact holography. Analogous
to how one might deduce from specific heat of metals whether
electrons or phonons are the relevant degrees of freedom.
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Holography exact quantum entropy

Wald entropy and beyond

Wald[94]; Iyer & Wald [94]; Jacobson, Kang, & Myers [93]

Wald entropy can incorporate the corrections to Bekenstein-Hawking
entropy from all higher-derivative local terms in the effective action.

But one should really use the 1PI quantum effective actions which
include in general nonanalytic and nonlocal terms.

These terms are in many cases essential for duality invariance of
entropy.

It is thus desirable to have a manifestly duality covariant formalism that
generalizes Wald entropy to be able to discuss the finite size effects
systematically. Such a generalization has been proposed in the recent work
of Sen. We will now review this definition of exact quantum entorpy.
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Holography exact quantum entropy

AdS2/CFT1 and exact quantum entropy

The near horizon geometry of a black hole is AdS2 × S2. Following
the usual rules of holography leads to a definition of exact quantum
entropy Sen [08]

Consider a black hole with charge vector (q, p). The quantum
entropy is defined by a functional integral over all field configurations
which asymptote to the AdS2 Euclidean black hole.

For a theory with some vector fields Ai and scalar fields φa, we have
the fall-off conditions

ds2
0 = v

[(
r 2 + O(1)

)
dθ2 +

dr 2

r 2 + O(1)

]
,

φa = ua + O(1/r) , Ai = −i e i (r − O(1))dθ , (1)

Magnetic charges are fluxes on the S2.
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Holography exact quantum entropy

To start with let us clarify two common misconceptions.

Choice of Ensemble

In two dimensions Coulomb potential grows at the boundary instead of
falling. Hence this growing mode must be held fixed and the constant
mode can fluctuate.

A(r) ∼ er + c

By Gauss law fixing e means that we are working in the fixed charge
sector. Hence, the natural ensemble from the perspective of the AdS2

boundary conditions is the microcanonical ensemble.

Note that this is in contrast to higher dimensional instances of the
AdS/CFT correspondence where the constant mode is held fixed.
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Holography exact quantum entropy

Index = Degeneracy

If there are least four unbroken supersymmetries then together with the
SU(1, 1) symmetry of AdS2 , closure of algebra implies SU(1, 1|2)
superalgebra at the horizon. Hence the horizon has an SU(2) symmetry. If
J is a generator then microstates associated with the horizon are invariant.

Tr [exp(2πiJ)] = Tr [1].

As a result index equals degeneracy.

Sen [08, 09]

Dabholkar, Gomes, Murthy, Sen [10]
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Definition and Objectives

Final definition

The quantum entropy is then defined in terms of the functional integral
with an insertion of the Wilson line:

W (q, p) =

〈
exp

[
− i qi

∫ 2π

0
Ai dθ

]〉finite

AdS2

.

The constants v , e i , ua which set the boundary conditions of the functional
integral are determined purely in terms of the charges by the attractor
mechanism. Hence they must be set to their attractor values v∗, e

i
∗, u

a
∗ .

The quantum entropy is thus purely a function of the charges (q, p).

The action in the functional integral suffers from an infrared divergence
due to infinite volume of the AdS2. To obtain a well-defined functional
integral one must regulate and renormalize. Holographic renormalization.
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Definition and Objectives

Renormalized functional integral

Put a cutoff at a large r = r0. Let Lbulk is the full local classical
Lagrangian density of the theory including all massive fields.

Since Lbulk is a local functional of the fields, the bulk effective action
has the form

Sbulk = C0r0 + C1 + O(r−1
0 ) , (2)

with C0,C1 independent of r0. The linear divergence can then be
removed by a boundary counter-term corresponding to a boundary
cosmological constant.

With this prescription, in the semi-classical limit one obtains

W (q, p) ∼ exp[Swald(q, p)] .
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Definition and Objectives

Our main goal is to put these formal definitions to use in concrete
examples. Our objectives will be two-fold:

Compute W (q, p) for arbitrary finite charges by evaluating the
functional integral of string field theory on the AdS2 background.

Compute d(q, p) from bound state dynamics of branes and check if it
equals W (q, p) computed above.
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Definition and Objectives

Evaluating the formal expression for W(q,p) by doing the string field
theory functional integral is of course highly nontrivial.

It may seem foolishly ambitious to try to evalute the functional
integral of full string field theory on the black hole background.

It turns out that using localization techniques one can go surprisingly
far and reduce the functional integral to an ordinary integral.

With enough supersymmetry, it seems possible to in fact evaluate
both d(q, p) and W (q, p) exactly.
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Review of Localization

Localization

Consider a supermanifold M with an integration measure dµ. Let Q be an
odd vector field on this manifold satisfying two requirements:

Q2 = H for some compact bosonic vector field H,

The measure is invariant under Q, in other words divµQ = 0.

We would like to evaluate an integral of some Q-invariant function h

I :=

∫
M

dµ h e−S.

To evaluate this integral using localization, one first deforms the integral to

I (λ) =

∫
M

dµ h e−S−λQV ,

where V is a fermionic, H-invariant function.

Atish Dabholkar (Paris/TIFR) Exact Quantum Entropy January 2011, Puri 15 / 44
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Review of Localization

The integral I (λ) is independent of λ because

d

dλ

∫
M

dµ h e−S−λQV =

∫
M

dµ h QV e−S−λQV = 0 ,

This implies that one can perform the integral I (λ) for any value of λ
and in particular for λ→∞.

Treating 1/λ as ~, one can evalute the functional integral
semiclassically. Semiclassical approximation is exact.

The functional integral localizes onto the critical points of the
functional SQ := QV which we refer to as the localizing solutions.
This reduces the functional integral over field space to a subspace.

Witten[88, 91], Duistermaat-Heckmann [82], Schawarz & Zaboronsky [95]
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The functional integral localizes onto the critical points of the
functional SQ := QV which we refer to as the localizing solutions.
This reduces the functional integral over field space to a subspace.

Witten[88, 91], Duistermaat-Heckmann [82], Schawarz & Zaboronsky [95]
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Review of Localization

To apply localization to our problem we will proceed in several steps.

Step I: Integrate out massive string fields

Integrate out the infinite tower of massive string modes and massive
Kaluza-Klein modes to obtain a local Wilsonian effective action for
the massless supergravity fields.

Our problem is reduced to evaluate exactly this functional integral of
a finite number of massless fields with AdS2 boundary conditions
using the full Wilsonian effective action keeping all higher derivative
terms which can include in general not only perturbative corrections
in but also worldsheet instanton corrections.

String theory provides a finite, supersymmetric, and consistent cutoff
at the string scale. The functional integral with such a finite cut-off
and a Wilsonian effective action will be our starting point.
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Review of Localization

Step II: Solve a supergravity problem

Consider a simpler problem of evaluating Ŵ (q, p) which is the
functional integral of supergravity consisting of only the gravity
multiplet and nv + 1 vector multiplets with the AdS2 boundary
conditions.

This is still a complicated functional integral. We will show that this
functional integral localizes onto an ordinary integral over nv + 1 real
parameters leading to an enormous simplification.

If the action consists of only F-terms then the classical part of the
integrand is given by the OSV partition function.

Measure of integration inherited from the original measure of
supergravity. Nonholomorphic contributions can be systematically
taken into account.
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Review of Localization

Step III: Back to W (q, p)

Use the results in Step II to evaluate W (q, p)

There are nonperturbative contributions from orbifolds of AdS2 of
order s. As a result, W (q, p) has the following form

W (q, p) =
∑
s

Ws(q, p) .

If D-terms and hyper do not contribute for reasons of supersymmetry,
W1(q, p) = Ŵ (q, p). If some D-terms do contribute, their
contribution can be taken into account systematically.

Evaluation Ws(q, p) for s 6= 1 is related to the problem of evaluation
of Ŵ (q, p) in a simple way.
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General setup

To apply localization to our problem, we need to identify a fermionic
symmetry Q. Near horizon geometry has SU(1, 1|2) symmetry.

[L, L±] = ±L± , [L+, L−] = −2L ,[
J, J±

]
= ±J± ,

[
J+, J−

]
= 2J ,[

L,G ia
±
]

= ±1

2
G ia
± ,

[
L±,G

ia
∓
]

= −iG ia
± ,[

J,G i±
r

]
= ±1

2
G i±
r ,

[
J±,G i∓

r

]
= G i±

r ,

{G i±
+ ,G j±

− } = ±4εijJ± , {G i+
± ,G j−

± } = ∓4iεijL± ,

{G i+
± ,G j−

∓ } = 4εij(L∓ J) .

ds2 = v
[
dη2 + sinh2(η)dθ2

]
+ v

[
dψ2 + sin2(ψ)dφ2

]
.
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General setup

Choice of the Supercharge

Pick an element
Q = G ++

+ + G−−−

which squares to H = 4(L− J). Here L generates rotation of the
Euclidean AdS2 which is a disk and J generates a rotation of S2. As a
result, H is a compact generator.

This corresponds to choosing the following combination of Killing
spinors as susy transformation parameter.

2 e−
i
2

(θ+φ)


cosh η

2 cos ψ2
sinh η

2 cos ψ2
− cosh η

2 sin ψ
2

− sinh η
2 sin ψ

2

+ 2 e−
i
2

(θ+φ)


sinh η

2 sin ψ
2

cosh η
2 sin ψ

2

sinh η
2 cos ψ2

cosh η
2 cos ψ2
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Given this choice of Q we choose the localizing action functional to be

SQ = QV ; V = (QΨ,Ψ)

where Ψ denotes schematically all fermions of the theory. QΨ is thus the
supersymmetry transformation using the particular spinor combination
above. Pestun[07], Banerjee et. al [09]

Since we are applying localization inside the functional integral, it is
necessary to use off-shell formulation supergravity. In general, off-shell
supergravity is notoriously complicated, but for vector multiplets an
elegant formalism exists using superconformal calculus where one gauges
the full superconformal group.

de Wit, Lauwers, van Holten, Van Proeyen [1980]

Cardoso, de Wit, Mohaupt [2000]

Atish Dabholkar (Paris/TIFR) Exact Quantum Entropy January 2011, Puri 22 / 44



Motivation Setup Strategy Computation Conclusions Comparison

Given this choice of Q we choose the localizing action functional to be

SQ = QV ; V = (QΨ,Ψ)

where Ψ denotes schematically all fermions of the theory. QΨ is thus the
supersymmetry transformation using the particular spinor combination
above. Pestun[07], Banerjee et. al [09]

Since we are applying localization inside the functional integral, it is
necessary to use off-shell formulation supergravity. In general, off-shell
supergravity is notoriously complicated, but for vector multiplets an
elegant formalism exists using superconformal calculus where one gauges
the full superconformal group.

de Wit, Lauwers, van Holten, Van Proeyen [1980]

Cardoso, de Wit, Mohaupt [2000]

Atish Dabholkar (Paris/TIFR) Exact Quantum Entropy January 2011, Puri 22 / 44



Motivation Setup Strategy Computation Conclusions Comparison

Localizing instanton solution

Supergravity multiplets

Weyl multiplet: The field content is:

w =
(

eaµ,w
ab
µ , ψi

µ, φ
i
µ, bµ, f

a
µ ,Aµ,V

i
µ j ,T

ij
ab, χ

i ,D
)
. (3)

Contains the vielbein, spin connection, auxiliary fields and fermions.

Vector multiplet: The field content is

XI =
(

X I ,ΩI
i ,A

I
µ,Y

I
ij

)
(4)

Here X I is a complex scalar,, AI
µ a vector field, and Y I

ij are an SU(2)
triplet of auxiliary scalars.
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Localizing instanton solution

Off-shell supersymmetry transformations

δΩi = 2 /DX εi +
1

2
εijFµνγ

µνεj + Yijε
j + 2Xηi ,

Here i is the SU(2) doublet index and η is the superconformal
supersymmetry,

N. B. Similar transformations for the Weyl multiplet, but we will assume
that the Weyl multiplet fields are not excited in the off-shell solution. More
general solutions may therefore be possible than the ones we have found.
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Localizing instanton solution

Importance of being off-shell

The beauty of off-shell supergravity consists in the fact that the
supersymmetry transformations are specified once and for all and do
not depend on the choice of the action.

Much like the coordinate transformation of the specified from general
covariance and does not depend on the what action we use.

This will be crucial for localization both at conceptual and
computational level.

In particular, auxiliary fields which are normally eliminated from the
physical action, will play an important role and will acquire nontrivial
position dependence for the localizing instanton solutions.
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Localizing instanton solution

Parametrization of the fields

X I := X I
∗ + H I + iJ I , X̄ I := X̄ I

∗ + H I − iJ I

Note that Y I
ij are triplets under the SU(2) rotation. It will turn out

that for the BPS equations that we solve, they all have to be aligned
along the same direction in the SU(2) space. Hence we parametrize
them as

Y I1
1 = −Y I2

2 = K I ; Y I1
2 = Y I2

1 = 0 .

We will similarly denote by f I
µν the electromagnetic field away from

the attractor values.
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Localizing instanton solution

The bosonic part of the localizing action (QΨ,QΨ) is then given by

cosh(η)
[
K − 2sech(η)H)

]2
+ 4 cosh(η)

[
H1 + H tanh(η)

]2
+ 4 cosh(η)[H2

0 + H2
2 + H2

3 ]

+ 2A

[
f −01 − J − 1

A
(sin(ψ)J3 − sinh(η)J1)

]2

+ 2B

[
f +
01 + J − 1

B
(sin(ψ)J3 + sinh(η)J1)

]2

+ 2A

[
f −03 +

1

A
(sin(ψ)J1 + sinh(η)J3)

]2

+ 2B

[
f +
03 +

1

B
(sin(ψ)J1 − sinh(η)J3)

]2
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Localizing instanton solution

+ 2A

[
f −02 +

1

A
(sin(ψ)J0 + sinh(η)J2)

]2

+ 2B

[
f +
02 −

1

B
(sin(ψ)J0 + sinh(η)J2)

]2

+
4 cosh(η)

AB
[sinh(η)J0 − sin(ψ)J2]2

+
4 cosh(η) sinh2(η)

AB
[J2

1 + J2
3 ] ,

where
H I
a := eµa ∂µH I , J I

a := eµa ∂µJ I ,

A := cosh(η) + cos(ψ) , B := cosh(η)− cos(ψ) .

It is understood that all squares are summed over the index I .
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Localizing instanton solution

Note that this action is a sum of complete squares. Thus, to obtain
the critical points of this localizing action, we set each of the terms in
square bracket to zero. This gives a set of first order differential
equations.

It turns out one can solve these equations exactly subject to the
boundary conditions of AdS2 to obtain an explicit analytic form for
the localizing instantons.

This family of instanton solutions is labeled by nv + 1 real parameters
C I , I = 0, . . . , nv . We have thus solved a major piece of the problem
that we set out to solve.

We have explicitly identified the off-shell field configurations onto which
the functional integral localizes labeled by finite number of real
parameters. We have thus successfully reduced the infinite dimensional
functional integral to a finite dimensional ordinary integral.
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Localizing instanton solution

Localizing instanton Solution

For these solutions, the scalar fields X I in the vector multiplets are no
longer fixed at the attractor values X I

∗ but have a nontrivial position
dependence in the interior of the AdS2 given by

X I = X I
∗ +

C I

cosh(η)
, X̄ I = X̄ I

∗ +
C I

cosh(η)

Y I1
1 = −Y I2

2 =
2C I

cosh(η)2
, f I

µν = 0 .

The scalar fields thus move away from the attractor values inside the
AdS2 ‘climbing up’ the entropy function potential. The Q
supersymmetry is still maintained because some auxiliary fields also
get nontrivial position dependence.
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Renormalized action

We now need to evaluate the physical action on the localizing
instantons after proper renormalization to compute Sren(C , q, p)

(−i(X I F̄I − FI X̄
I )) · (−1

2
R) +

[
i∇µFI∇µX̄ I

+
1

4
iFIJ(F−Iab −

1

4
X̄ IT ij

ab εij)(F−abJ − 1

4
X̄ JT ij

ab εij)

− 1

8
iFI (F +I

ab −
1

4
X ITabij ε

ij)T ij
ab εij −

1

8
iFIJY I

ijY
Jij − i

32
F (Tabij ε

ij)2

+
1

2
iF

Â
Ĉ − 1

8
iF

ÂÂ
(εikεjl B̂ij B̂kl − 2F̂−abF̂−ab)

+
1

2
i F̂−abF

ÂI
(F−Iab −

1

4
X̄ IT ij

ab εij)−
1

4
i B̂ijFÂI

Y Iij + h.c.
]

− i(X I F̄I − FI X̄
I ) · (∇aVa −

1

2
V aVa −

1

4
|Mij |2 + DaΦi

αDaΦα
i ) .
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Renormalized action

Renormalized action

Substituting our localizing instanton solution in the above action we
can extract the finite piece after removing the leading divergent piece
linear in r0 by holographic renormalization.

After a tedious algebra, one obtains a remarkably simple form for the
renormalized action Sren as a function of {C I}.

Sren(φ, q, p) = −πqIφ
I + F(φ, p) (5)

with φI := e I∗ + 2iC I and F given by

F(φ, p) = −2πi

[
F
(φI + ipI

2

)
− F̄

(φI − ipI

2

)]
,

where e I∗ are the attractor values of the electric field.
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Renormalized action

Remarks

Note that Sren(φ, q, p) equals precisely the classical entropy function
E(e, q, p). The physics is however completely different.

In the entropy function, the scalar fields are set at the their attractor
values X∗ which is their value at the boundary of AdS2. In the
renormalized action, the scalar fields are set at their values at the
center of AdS2. This is very important.

Thus, even though the scalar fields are held fixed at the boundary by
the boundary conditions of the functional integral, their value at the
origin can fluctuate.
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Renormalized action

Remarks

The entropy function is an essentially classical on shell object. Only
its critical points and the value of the function at these critical points
has physical meaning. This fixes only the first two terms in a Taylor
expansion.

In particular, there are in principle an infinite number of functions
with the same critical behavior. It is something of a surprise, after a
long calculation, that the renormalized action is precisely equal to the
entropy function.

The renormalized action is an intrinsically off-shell and hence quantum
object. The parameters C can take values from −∞ to +∞. Hence,
we access large values in field space far away from the critical points.
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Caveats and open problems

One-loop determinants need to be evaluated. This is essentially
algorithmic but could be computationally hard in the general case.

We have ignored hyper multiplets. The off-shell supersymmetry
transformations of the vector multiplets do not change by adding
hypers. So our localizing instantons will continue to exist. There
could however be additional localizing solutions that excite the hyper
multiplet.

There could be additional localizing solutions in which Weyl multiplet
fields are excited.

D-terms may contribute if the nonrenormalization theorem discussed
by de Wit cannot be extended to the most general action. This can
be systematically taken into account in this formalism. The solution
remains unchanged, on the renormalized action will change.
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Summary of Results

Summary of Results

Localization of the functional integral

The full functional integral of string field theory on AdS2 localizes
onto the submanifold MQ of critical points of the functional SQ

where Q is a specific supersymmetry.

We have obtained exact analytic expression for a family of nontrivial
complex instantons as exact solutions to the equations of motion that
follow from extremization of SQ .

Since we use off-shell supersymmetry variations, these instanton
solutions are completely universal and independent of the form of the
physical action.
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Summary of Results

The Wilson line

The renormalized action precisely equals the entorpy function but for
values of fields evaluated at the center of AdS2

The Wilson line expectation value in supergravity takes the general
form

Ŵ (q, p) =

∫
MQ

e−πφ
IqI eF(φ,p) |Zinst |2 Zdet [dC ]µ

The contribution Zdet from one-loop determinants is in principle
computable. There can be additional contribution from brane
instantons |Zinst |2.
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Summary of Results

Exact Quantum Entropy

W (q, p) =
∑
s

Ws(q, p) ,

In the Type-II frame

W0(q, p) =

∫
MQ

e−πφ
IqI |Ztop(φ, p)|2 Zdet [dC ]µ .

Note that the classical part of the integrand is precisely of the form
conjectured by Ooguri-Strominger-Vafa. Ooguri, Srominger, Vafa [04]
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Summary of Results

Relation to OSV

As we have seen classical entropy function is an essentially on-shell
object. OSV made an inspired guess to give it an off-shell status.

Here we have derived it from first principles by an explicit evaluation
of a functional integral following the usual rules of AdS holography.

What enters the renormalized action is the value of the scalar fields at
the center of the AdS2 which is allowed to fluctuate. We are able to
access large regions in the field space away from critical points
because of localization.

The natural ensemble here is microcanonical one and follows from
AdS2 boundary conditions.

Our localizing instanton solutions are universal and follow from
off-shell susy transformations. If some D-terms make a contribution, it
can be taken into account by evaluating these terms on our solutions.
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Summary of Results

There are additional contributions from the measure and one-loop
determinants. These can account for holomorphic anomalies. Their
computation still needs to be completed in the general case but is
essentially algorithmic. This gives a precise route to deal with the
holomorphic anomalies to obtain duality invariant answers.

There are nonperturbative contributions from orbifolds of AdS2 which
can be systematically included and play a crucial role to ensure
integrality of the degeneracy. It is justified to include these subleading
contributions because of localization.

In the next section, we will see that all of these ingredients play an
important role and can in some cases be evaluated explicitly e. g. with
N = 4 supersymmetry. The determinants in this case can equal unity. In
these examples, the known microscopic answers provide a very useful
guide.
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Microscopic computation

Exact microscopic degeneracy of half-BPS black holes

Consider Heterotic string compactified on T 6. Degeneracy of
half-BPS states with charge vector q are given by the Fourier
coefficients of the partition funciton

Z (τ) =
1

η24(τ)
,

of 24 left-moving transverse bosons of the heterotic string.
Dabholkar & Harvey [89]

The degeneracy depends only on the T-duality invariant n := q2/2
and is given by

d(n) =

∫
C

e−2πiτnZ (τ)dτ ,
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Microscopic computation

Rademacher expansion

The degeneracy admits and exact expansion

d(n) =
∞∑
c=1

Kl(n;−1; c)

(
2π

c

)14

Ĩ13(
4π
√

n

c
)

where

Ĩ13(z) =
1

2πi

∫ ε+i∞

ε−i∞

1

t14
et+ z2

4t dt,

is a modifield Bessel function of index 13, and

Kl(n;−1; c) =
∑

d∈(Z/cZ)∗

exp(
2πidn

c
) · exp(

−2πi

dc
).

is called the “Kloosterman sum”. This sum simplifies for c = 1 being
equal to 1, but for other values of c it shows a nontrivial dependence on n.
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Macroscopic computation

Essentially all features of this formula can be reproduced from the
macroscopic comutation.

The exponent of the integrand of the Bessel function is essentially the
renormalized action on the localized instantons.

Integration over the nv real parameters C I together with the measure
determined from the functional integral gives the factor of t−14. One
final integration over one C parameter remains which (after an
analytic continuation) is precisely the integration over t.
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Macroscopic computation

Essentially all features of this formula can be reproduced from the
macroscopic comutation

The orbifold contributions give the subleading Bessel functions.

Since we have evaluated the functional integral exactly using
localization, and not in a saddle point approximation, it is justified to
keep these exponentially subleading contributions.

Even the Kloosterman sum has a physical interpretation in terms of
phases arising from Wilson lines but this needs to be fully understood.

A. D, João Gomes, Sameer Murthy, work in progress

Remarkably, all detailed number-theoretic features of the quantum
degeneracies can be reproduced from a functional integral of string theory
in AdS2. It is only after adding all perturbative and nonperturbative
corrections does one get integers for the degeneracies.
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